An exposure time calculator for the Maunakea Spectroscopic Explorer

Tae-Geun Ji^a, Taeeun Kim^b, Changgon Kim^a, Hojae Ahn^a, Mingyeong Yang^a, Soojong Pak^a, Sungwook E. Hong^{c,d}, Jennifer Sobeck^e, Kei Szeto^{e,f}, Jennifer L. Marshall^g, Christian Surace^h

^aSchool of Space Research, Kyung Hee University; ^bDepartment of Astronomy and Space Science, Kyung Hee University; ^cCosmology Group, Korea Astronomy and Space Science Institute; ^dAstronomy Campus, University of Science & Technology; ^eCFHT Corporation; ^fNational Research Council Canada, Herzberg Astronomy and Astrophysics; ^gMitchell Institute for Fundamental Physics and Astronomy, Texas A&M University; ^hAix Marseille Univ, CNRS, LAM, Laboratoire d'Astrophysique de Marseille

INTRODUCTION

The Maunakea Spectroscopic Explorer (MSE) will convert the 3.6-m Canada-France-Hawaii Telescope (CFHT) into an 11.25-m primary aperture telescope, to produce multi-object spectroscopy with a suite of spectrographs that are capable of detecting over 4,000 objects per pointing. The MSE-ETC has individual computation modes for SNR, exposure time, and the relation between SNR and AB magnitude, or wavelength. The software is developed with Python 3.7, and Tkinter graphical user interface is implemented to facilitate cross-platform use. In this research, we present the logical structure by the functionality of MSE-ETC, including a software design and a demonstration.

SOFTWARE STRUCTURE

The MSE spectrographs consist of two instrument platforms with low/moderate resolution (LMR) and high resolution (HR). They have a spectral resolution range from R~3,000 to R~40,000 and a full wavelength range from 360 nm to 1800 nm. The MSE-ETC provides four calculation mode:

Start					
GUI Resolution Mode Calculation Mode User Input	Read order index for HR mode & skytable for atmospheric throughput calculation.				

Ø MSE Exposure	Time Calculator v1.2.4 (20211006, TK) —	<u>.</u>		×		
	Maunakea Spectroscopic Explorer Explorer					
Resolution Mode Selection						

② Exposure Time Calculation ① S/N Calculation ③ S/N vs. Magnitude ④ S/N vs. Wavelength

Thus, the algorithm (Fig. 1) and the GUI (Fig. 2) of the MSE-ETC are designed based on the simulation mode. Except for fixed variables, the instrument parameters for these modes are imported by selecting the spectral resolution modes from a user.

Fig. 1 Software architecture including data flow for MSE-ETC. The functions, parameters, and outputs are determined by a user's selection on the GUI.

Telluric Absorption Spectra $\left(2\right)$

Telluric absorption spectra are gained from the model data of the ESO SkyCalc Sky Model Calculator. The MSE-ETC uses a dataset

Low R	esolution Moderate	e Resolution 🔍 Hi	igh Resolution
S/N Calculation	Calculation Me	ode Selection © S/N vs. Magnitude	C S/N vs. Wavelength
Airmass =1 $PWV [mm] =$ 1 $Exp. Time [sec] =$ 1200Number of $Exp. =$ 3 $Target S/N =$ 200Target S/N =200Target Magnitude (AB):Blue18.0Green18.0Red18.0NIR18.048218.0	User Input Mag. Range (Al Wave. Range: Sky Brightness (AB): Blue 20.7 Green 20.7 Red 20.7 NIR 20.7 NIR 20.7	Parameters B): 18.0 - 26.0 © Blue B1: 359.60 - 367.0 © Green G1: 419.18 - 429.3 © Green G1: 419.18 - 429.3 © Red R1: 585.44 - 605.4 © NIR 360 -	05 ✓ 34 ✓ 45 ✓
	RUN ONLY	RUN & SAVE	

Fig. 2 The GUI of the MSE-ETC. It is designed with an pop-up application, which is written by Tkinter library on Python 3.

OH Sky Lines 3

The wavelengths of the OH emission lines are gained by convolution to R~40000 OH line data (1400nm ~ 1800nm) (Fig. 4).

SIMULATION METHODS

Continuum Signal for Point Source

(Continuum) Signal from point source target

 $S_{cont} = \frac{t_{exp} n_{exp} A_{tel} \tau_{atmo} \tau_{opt} \tau_{IE} f_{\nu}(m_{AB})}{h P}$ [e /resolution elements]

Signal from the sky background

 $B_{sky} = \frac{t_{exp} n_{exp} A_{tel} \tau_{atmo} \tau_{opt} \Omega_{fiber} b_{\nu}(m_{AB})}{h_R} \text{ [e /resolution elements]}$

where, Ω_{fiber} in units of arcsec², $b_{\nu}(m_{AB})$ in units of W m⁻² Hz⁻¹ arcsec⁻²

Detector Read noise: d_{read} [e /pixel] Detector dark current: d_{dark} [e /sec /pixel] The total noise

```
N_{cont}^2 = S_{cont} + B_{sky} + n_{res} n_{exp} \left[ t_{exp} d_{dark} + d_{read}^2 \right] [e /resolution elements]
```

Signal to noise ratio = S_{cont}/N_{cont}

RESULTS

The results of S/N and exposure time calculation are indicated by text in the output terminal. S/N vs. magnitude and S/N vs.

that is made by convolution to match the spectral resolution (Fig. 3).

Fig. 3 Convolution sample in the red band (737~900 nm) of MR instrument for PWV 1.0 mm (left), 2.5 mm (right).

Convolution sample of OH emission lines. Here the data is regenerated by resolution of R~40000 to R~3000.

◄ Fig. 6 The results for S/N vs. magnitude (top) and S/N vs. wavelength (bottom) for LR (left), MR (middle), and HR (right). In the S/N vs. wavelength plots, the dashed line indicates in cased of the

wavelength results are displayed by figures and they can be saved

with the data array.

The calculation Signal-to-Noise from single magnitude input			The calo	The calculation exposure time for target S/N					
Resolution Mode = Low Resolution			Resoluti	Resolution Mode = Low Resolution					
Airmass		= 1.0			Airmass		= 1.0		
PWV [mm]		= 2.5			PWV [mm]	i i	= 2.5		
Exposure	Time [s] = 120	0		Exposure	Number	= 1		
Exposure	Number	= 1			Target S	5/N =	200		
Band	Mag.	Sky	S/N		Band	Mag.	Sky	ExpTime [s]	
[Blue]	18.00	20.70	130,586203		[Blue]	18.00	20.70	2784.179688	
[Green]	18.00	20.70	118.995047		[Green]	18.00	20.70	3346.679688	
[Red]	18.00	20.70	135.605177		[Red]	18.00	20.70	2590.820312	
[NIR]	18.00	20.70	122.438072		[NTR]	18.00	20.70	3100.585938	
[482.0]	18.00	20.70	130.586203	(Band = Blue)	[482.0]	18.00	20.70	2784.179688	(Band = Blue)

Fig. 5 Results of S/N (left) and exposure time (right) calculation for LR instrument. In the

sky parameters, the airmass is fixed to 1.0 and the PWV 2.5 mm.

Presentor: Tae-Geun Ji, Combind MD/PhD course, School of Space Research, Kyung Hee University Email: jtg777@khu.ac.kr, Tel: +82-10-8873-7285 SPIE paper number: #12189-98