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Abstract: We discuss the potential to understand the nature of dark matter particles with the next generation
spectroscopy program, determining the line-of-sight velocities of a large number of faint stars in the Milky
Way’s stellar streams and nearby dwarf spheroidal galaxies, obtaining the redshifts of low-mass galaxies in
the local Universe (z < 0.05), and searching for strongly lensed galaxies at higher redshift. N-body and
hydrodynamical simulations of cold, warm, fuzzy and self-interacting dark matter show that non-trivial dy-
namics in the dark sector will leave an imprint on structure formation, with much of this science having been
developed in last few years. Sensitivity to these imprints will require extensive and unprecedented kinematic
datasets for stars down to r ~ 23 mag and redshifts for galaxies down to 7 ~ 24 mag. We conclude that
a 10m class wide-field, high-multiplex spectroscopic survey facility like Maunakea Spectroscopic Explorer
is required in the next decade to provide a definitive search for deviations from the cold collisionless dark

matter model.



Motivation. Dark matter has been detected through its gravitational influence on galaxies and clusters of
galaxies, the large-scale distribution of galaxies, and the cosmic microwave background. But, the kinds
of particles or fields that make up the dark matter have not been identified despite decades of dark matter
searches deep underground, in particle colliders, and through multimessenger astronomy. At the same time,
there has been a flowering of ideas for the nature of dark matter that have exciting signatures in astrophysical

or terrestrial searches, and new production mechanisms .

Astrophysical observables are critical to constraining models of dark matter across a range of mass scales
from 10723 eV to 100 M. We will soon enter a new era of high spatial resolution observations and fast sky
imaging surveys with James Webb Space Telescope and the Legacy Survey of Space and Time (LSST) at
the Vera C. Rubin Observatory, where these astrophysical observables have the potential to zero in on viable
theory spaces. Recent progress in N-body and hydrodynamical simulations of cold collisionless dark matter
(CDM), warm dark matter (WDM), fuzzy dark matter (FDM), and self-interacting dark matter (SIDM) have
helped to bolster this case, while a wealth of new observations from dwarf galaxies to galaxy clusters have
opened up the exciting possibility that non-trivial dynamics in the hidden sector could have left an imprint
on structure formation. In particular, different dark matter models can impact the density and the abundance
of dark matter halos, which could be measured via astronomical observations.

In addition to the imaging surveys, spectroscopic observations are essential to dark matter studies. In
this letter, we discuss concrete ways in which astrophysical probes can elucidate the particle nature of dark
matter with Maunakea Spectroscopic Explorer (MSE), which is a highly-multiplexed (4332 fibers), wide
field of view (1.5 square deg), large aperture (11.25 m in diameter), optical/NIR (360-1300 nm) facility
for obtaining spectroscopy with a spectral resolution resolution of ~ 2500 — 4000 in low-resolution mode
and ~ 20000 — 40000 in high-resolution mode. We highlight several science cases in this letter, and group
the science cases into the following four probes based on the distance of the objects being targeted — from
nearby to the distant Universe. We note that a longer discussion is available on the arXiv review? from MSE
Dark Matter Working Group, or Chapter 6 of the MSE Detailed Science Case document?.

Probes

Stellar streams are created by the tidal disruption of globular clusters and dwarf galaxies. The passage
of a subhalo near or through a cold globular cluster stream can perturb the orbits of part of the stream stars
and cause gaps and wiggles to form*~’. This is one of a small number of methods currently known that
is sensitive to the subhalo mass function down to small masses (M < 108 Mg)®, the regime where dark
matter halos are no longer able to form stars or a galaxy. Each subhalo flyby produces a unique signature on
the stream density and orbit, which when combined with radial velocities of individual stream stars provides
enough information to reconstruct the perturber properties, i.e. its mass, scale radius, relative velocity, and
impact parameter”. In order to be able to probe subhalos down to 10° — 107 M, a radial velocity precision
of 100 — 300 ms~! is required. A large aperture telescope (to probe fainter stars) with high precision for
velocity measurements (< 1kms™!) is necessary for this science. To date, about 50 streams have been
discovered in our Galaxy '*-!> while less than one-third of them have had dedicated spectroscopic follow-
up observations; the next generation of imaging surveys, such as LSST, are expected to find many more
streams. A dedicated spectroscopic follow-up program for stellar streams requires both a wide field-of-view
and large aperture.

Dwarf galaxies in the Milky Way and Andromeda Galaxy (M31) can be used as an incisive test of
dark matter physics, as various viable dark matter models provides different predictions on the abundance
of dwarf galaxies as well as the dark matter distribution within them, especially on the faintest galaxies — so
called ultra faint dwarf galaxies — where the effects from baryonic (feedback) processes is minimal. A dedi-
cated spectroscopic survey program with a limiting magnitude of r ~ 23 will enable characterization of the



new discoveries, for example the roughly 200 Milky Way’s satellite dwarf galaxies'#'> LSST is supposed
to find, and it will significantly increase the stellar sample sizes in known dwarf galaxies. Furthermore,
for searches of dark matter annihilation or decay into high energy Standard Model particles (e.g. X-ray or
v-ray), dwarf galaxies are the ideal target since they are nearby, dark matter dominated, and background
free. Spectroscopic follow-up observations are essential to determine the dark matter density at the center
of the galaxies to constrain the dark matter self-annihilation cross sections or decay lifetimes.

Low-redshift (2 < 0.05) dwarf galaxy beyond the Milky Way also make inferences about the nature
of dark matter. A spectroscopic survey down to r ~ 24, combined with efficient target selection, can
produce a near-complete dwarf galaxy sample for Leo I like dwarf galaxies (M, ~ —12) at z < 0.05. This
allows us to obtain the satellite luminosity function at the faint end beyond the Milky Way and M31, which
is a critical discriminant of the too-big-to-fail problem and its proposed solutions'%!”. In addition, weak
gravitational lensing in low mass dwarf galaxies (M} < 10! M) provides a direct unbiased measurement
of the total mass, and this is critical for an accurate assessment of the implications of the too-big-to-fail
problem. Since these low mass galaxies are only detectable at low redshift (z < 0.2), contamination of
high-redshift galaxies in the lens sample could either smear out the lensing signal or produce catastrophic
photo-z outliers, resulting in a bias in the inferred mass profile. A spectroscopic survey alleviates both these
issues.

Strong gravitational lensing by galaxies provides powerful ways to constrain the mass function of low-
mass dark halos and subhalos, since lensing is sensitive to all the mass along the line of sight. For unresolved
sources such as lensed quasars, the presence of substructure is manifested in the flux-ratio anomalies: differ-
ences between the relative magnifications of lensed images as compared to the predictions of smooth mass
models '®. Surveys with the next generation spectroscopic facilities will be essential for confirming quasars
lenses from a vast amount of lensing systems found by LSST, and selecting ideal candidates for high spatial
resolution imaging with Adaptive Optics or space-based telescopes. These systems can then be used to infer
the presence of dark matter substructure within or along the line of sight to the lens, or place constraints
when they are not found. For resolved sources (galaxies), measurements of the surface-brightness pertur-
bations of the lensed images (e.g. arcs) can reveal the presence of unseen mass and this provides stringent
constraints on the subhalo mass function'”. Galaxy redshift surveys (using SDSS) have proven to be an
excellent source for the discovery of new galaxy-galaxy strong lensing systems’’~*. A wide field-of-view
spectrograph on a 10m class telescope, combined with dedicated survey operations mission, can enable flux-
limited galaxy surveys ten times larger than the original SDSS, delivering a sample of thousands of strong
galaxy-galaxy lenses, from which we may expect dozens of substructure detections. The redshifts obtained
for these systems via the spectroscopy survey will be an essential component in the lens modeling.

Recommendations for Snowmass 2021

While there are many planned spectroscopic surveys with 4-m class telescopes (e.g. WEAVE, 4MOST,
DESI), there are no current plans for a spectroscopic survey with a 10-m class telescope. Considering the
large sky area that needs to be covered and the relatively small FOV of 10m class telescopes compared to
4-m class telescopes, a dedicated survey telescope is necessary to conduct the proposed programs for Dark
Matter and other science. There is no capability on existing 10m class telescopes to conduct such a survey.
Among the fourteen 8-10m telescopes (Keck, LBT, VLT, HET, Gemini, Subaru, GTC, SALT), only Subaru
Telescope has a relatively large FOV, which is, however, a facility telescope with limited spectroscopic
survey time. Therefore, a 10m class wide-field, high-multiplex spectroscopic survey facility like Maunakea
Spectroscopic Explorer is required in the next decade to provide a definitive search for deviations from the
cold collisionless dark matter model.
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